

Summary

- -NIPPON GASES presence in Europe
- -Combustion fundamentals
- -DiluJet® JL O₂-H₂/NG
- Experiences in Industrial tests

NIPPON GASES, Our Presence in Europe

14 Pipelines

12 CO₂ Plants

5 Specialty Gases Laboratories

1K trucks

30 Air Separation Units

40 PAG Plants

Over **2.8 M** cylinders

6 Hydrogen Plants

44 On-Site

7 Operative Terminals

Combustion Fundamentals

The Adverse Impact of N₂ on Heat Input

Composition of Air

Air-Fuel Combustion

$$CH_4 + 2O_2 + 7.6N_2 \rightarrow 2H_2O + CO_2 + 7.6N_2$$

1 Nm³ of air per Mcal_{HHV} of heat input 241 Nm³ of air per GJ_{HHV} of heat input 868 Nm³ of air per MWh_{HHV} of heat input

1 Volume of Methane produces ~ 11 volumes of waste gas

Oxy-Fuel Combustion

$$CH_4 + 2O_2 \rightarrow 2H_2O + CO_2$$

0.21 Nm3 of O2 per Mcal_{HHV} of heat input 50 Nm3 of O2 per GJ_{HHV} of heat input 181 Nm3 of O2 per MWh_{HHV} of heat input

1 mol of Methane produce 3 mol of waste gas

Flue Gas Composition According to Fuel Used

Combustion with Air

$100\% H_2 + Air$

0% CO₂

3,1% O₂

67,3% N₂

29,6% H₂O

Assuming an excess air of 1/11,5

Combustion with Oxygen

100% H₂ + O₂

0% CO₂

 $0\% O_{2}$

0% N₂

100% H₂O

Heat Transfer

The Metric Matters When Comparing NO_x in Oxy-fuel!

DiluJet® JL O₂-H₂/NG

Burner Test

DiluJet® JL. O₂-H₂/NG test in open-air

Schematic drawing of experimental setup

Power: max 1.5MW

DiluJet® JL. O₂-H₂/NG test in open-air

DiluJet® JL. O₂-H₂/NG NOx Emissions

- ☐ The higher the hydrogen mixing ratio, the higher the NOx concentration.
- ☐ The effect of the hydrogen mixing ratio is small when evaluated in terms of NOx production.

DiluJet® JL O₂-H₂/NG

Industrial Experience

DiluJet® JL. O₂-H₂ In Steel Ladle Preheating

Heating and Drying Curve Trail Campaign:

- Monitoring of temperatures
- Study of refractory materials
- Measurement of flue gases

DiluJet® JL. O₂-H₂ In Glass Furnaces

Photographs of glass samples are no marked differences visible

- Study of refractory materials
- Measurement of flue gases

DiluJet® JL. O₂-H₂ In Non-Ferrous

- Testing of H₂ combustion.
- 2 tons test furnace.
- Successful test.
- Slight pick up of H₂ into the melt.
- SNIF in-line system remove it.
- Not consider this as a problem.

What did we learn?

- The technology to use H₂ as fuel is ready to use.
- The emissions associated to the H₂ use are in line with today BAT.
- Creating experience on using H₂ on hard to abate industries.

H₂ on necessary volumes and price to be used in the industry

